A Combined State-Space Nodal Method for the Simulation of Power System Transients

Christian Dufour (member), Jean Mahseredjian (senior member) and Jean Bélanger (member)

Abstract—This paper presents a new solution method that combines state-space and nodal analysis for the simulation of electrical systems. The presented flexible clustering of state-space described electrical subsystems into a nodal method offers several advantages for the efficient solution of switched networks, nonlinear functions and for interfacing with nodal model equations. This paper extends the concept of discrete companion branch equivalent of the nodal approach to state-space described systems and enables natural coupling between them. The presented solution method is simultaneous and allows to benefit from the advantages of two different modeling approaches normally exclusive from one another.

Index Terms—state-space, nodal analysis, electromagnetic transients, real-time.

I. INTRODUCTION

The computation of electromagnetic transients can be based on various numerical methods for the formulation and solution of network equations. The most widely used methods fall into two categories: the state-space and nodal analysis formulations. State-space equations are used, for example, in [1] for inserting electrical circuit equations into the Simulink [2] solver. Nodal equations are widely used in EMT-type (Electromagnetic Transients) applications, such as [3] and [4]. The modified-augmented-nodal analysis method is used in [5][6] for eliminating topological restrictions from the nodal analysis approach.

The nodal equations are assembled after discretizing all circuit devices with a numerical integration rule such as trapezoidal integration. Such equations are particularly powerful and efficient for simulating very large networks through sparse matrix methods. Some real-time simulator technologies are also based on the nodal formulation [7][8].

In the case of state-space equations the numerical integration technique can be selected after formulation, which simplifies the programming of variable time-step integration techniques. In addition state-space representation can be particularly powerful for controller design methods [1]. The main disadvantage is the computing time required for the automatic synthesis of state-space matrices. Other complications can arise for the simultaneous solution of nonlinear models, for the simulation of large networks and for large numbers of states in some model equations.

Some variations of the nodal approach are based on the concept of group separation for increasing efficiency and flexibility. In [9] the use of groups provides a technique for diminishing the number of nodal points and consequently the size of the system matrix for real-time computations [10]. In [11] the compensation method allows separating circuits and solving them independently. The compensation method is non-iterative when the solved circuits are linear. A similar idea is used in [12] for reducing the number of nodal connection points. In [13] state-space equations are also used for this purpose.

The inclusion of state-space equations into nodal equations has been applied in [14] (see also [15]) for the purpose of model circuit synthesis from fitted measurements.

This paper presents a general methodology for the simultaneous interfacing of nodal equations with state-space equations for arbitrary network topologies. Such interfacing allows eliminating several modeling limitations in state-space based solvers. This interfacing allows creating state-space groups that can be maintained independently for efficient computation of switching events. In addition, each state-space group uses its own automatic formulation of state-space matrices which obviously reduces the formulation time when compared to unique state-space equations of the complete system without grouping.

The discrete state-space solvers are inefficient for handling switching events, especially in real-time applications, where pre-calculation methods must be used. The massive pre-calculation of state-space matrix sets for all switch combinations becomes problematic in terms of required memory for large numbers of coupled switches [16].

The method proposed in this paper contributes to the improvement of state-space based power system simulation solvers. It notably offers important advantages for real-time applications.

This paper starts with a theoretical presentation and follows with demonstration cases. The reference state-space and nodal analysis solvers used in this paper are those presented in [1] and [17] respectively.

Christian Dufour is with Opal-RT Technologies, 1751 Richardson, Montréal (Québec), Canada, H3K 1G6
Jean Mahseredjian is with École Polytechnique de Montréal, Campus Université de Montréal, 2900, Edouard-Montpetit, Montréal (Québec), Canada, H3T 1J4 (corresponding author, 514-340-4711 (4870); e-mail: jeannm@polymtl.ca).
Jean Bélanger is with Opal-RT Technologies.
II. STATE-SPACE NODE METHOD

The state-space nodal (SSN) method described in this section uses arbitrary size clusters (groups) of electrical elements and combines them into a single nodal admittance matrix. The cluster equations are discretized state-space equations. The trapezoidal integration rule is used in the discretization process. The clusters include implicitly unknown node voltages at their nodal connection points. These voltages are at common connection points and must be solved simultaneously using nodal analysis.

Finally, in the proposed SSN method, the cluster equations are not limited to state-space equations. The clusters can be also derived from nodal analysis and combined with state-space clusters.

A. State-space groups

Any given group of circuit elements can be given the state-space equations

\[
x = A_k x + B_k u
\]

\[
y = C_k x + D_k u
\]

(1)

where bold characters are used to denote vectors and matrices. The column vectors \(x\) and \(u\) are the state variable and input vectors respectively. The state variables are capacitor voltages and inductor currents. They are independent and found from the proper tree of the circuit. The column vector \(y\) is the vector of outputs. The state-space matrices \(A_k\), \(B_k\), \(C_k\) and \(D_k\) correspond to the \(k\)th permutation of switches and piecewise linear device segments. Automatic formulation methods for equation (1) are out of the scope of this paper and can be found in many references, such as [18] and [19].

The discretization of state equations in equation (1) results into

\[
x_{t + \Delta t} = \hat{A}_k x_t + \hat{B}_k u_t + \hat{B}_k u_{t + \Delta t}
\]

(2)

where \(\Delta t\) is the integration time-step and the hatted matrices result from the discretization process using trapezoidal integration. This step is also known as numerical integrator substitution [19] with the trapezoidal integrator. In this paper, equation (2) and the output equations in (1) are refined as follows

\[
x_{t + \Delta t} = \hat{A}_k x_t + \hat{B}_k u_t + \hat{B}_k u_{t + \Delta t}
\]

(3)

\[
\begin{bmatrix}
y_{i + \Delta t} \\
y_{n + \Delta t}
\end{bmatrix} = \begin{bmatrix}
C_{i n} \\
C_{n n}
\end{bmatrix} x_{t + \Delta t} + \begin{bmatrix}
D_{k i i} & D_{k i n} \\
D_{k n i} & D_{k n n}
\end{bmatrix} \begin{bmatrix}
u_{i + \Delta t} \\
u_{n + \Delta t}
\end{bmatrix}
\]

(4)

The subscript character \(i\) refers to internal sources (injections) and the subscript \(n\) refers to external nodal injections. The combination of the lower row of equation (4) with equation (3) gives

\[
y_{i + \Delta t} = C_{k i} x_t + \hat{B}_k u_t + \hat{B}_k u_{t + \Delta t}
\]

\[
+ (C_{k n} \hat{B}_k u_t + D_{k n} u_{t + \Delta t}) u_{n + \Delta t}
\]

(5)

It is apparent that the above equation has an independent term (known variables before solving for \(y_{n + \Delta t}\)) and can be written as

\[
y_{n + \Delta t} = y_{k + \Delta t} + W_{kn} u_{n + \Delta t}
\]

(6)

Here the subscript \(hist\) ("history") has been used to denote known variables for the solution of this equation and

\[
W_{kn} = C_{k n} \hat{B}_k + D_{k n} u_{n + \Delta t}
\]

(7)

Two different interpretations can be made from the above equation.

When \(y_n\) represents current injections (entering a group) and \(u_n\) is for node voltages, then \(y_{k + \Delta t}\) represents history current sources (\(i_{k + \Delta t}\)) and \(W_{kn}\) is an admittance matrix. This is called hereinafter a V-type SSN group and it is a Norton equivalent.

When \(y_n\) represents voltages and \(u_n\) holds currents entering a group, then \(y_{k + \Delta t}\) represents history voltage sources (\(v_{k + \Delta t}\)) and \(W_{kn}\) is an impedance matrix. This is referred to hereinafter as an I-type SSN group and it is a Thevenin equivalent.

In general, it is possible to have both types of groups (V-type and I-type) by rewriting equation (6) as follows

\[
\begin{bmatrix}
y_{i + \Delta t} \\
y_{n + \Delta t}
\end{bmatrix} = \begin{bmatrix}
y_{hist} \\
y_{n + \Delta t}
\end{bmatrix} + \begin{bmatrix}
W_{II} & W_{IV} \\
W_{VI} & W_{VV}
\end{bmatrix} \begin{bmatrix}
i_{i + \Delta t} \\
i_{n + \Delta t}
\end{bmatrix}
\]

(8)

where the superscripts I and V denote I-type and V-type relations respectively and where the notation has been simplified by dropping the subscripts \(k\) and \(n\) in \(W_{kn}\). This equation is referred to as a mixed-type group. It can be straightforwardly transformed into a nodal representation by regrouping all current vectors (\(i_{i + \Delta t}\) and \(i_{n + \Delta t}\)) on the left hand side:

\[
\begin{bmatrix}
i_{i + \Delta t} \\
i_{n + \Delta t}
\end{bmatrix} = \Gamma_{kn} \begin{bmatrix}
y_{hist} \\
y_{n + \Delta t}
\end{bmatrix} + Y_{kn} \begin{bmatrix}
i_{i + \Delta t} \\
i_{n + \Delta t}
\end{bmatrix}
\]

(9)

The admittance matrix \(Y_{kn}\) derived from a group (of any type) is mapped though its nodes and inserted into the global nodal admittance matrix \(Y_N\) of

\[
i_{N_{i + \Delta t}} = Y_N v_{N_{i + \Delta t}}
\]

(10)

where the vector \(i_N\) contains known nodal injections and the vector \(v_N\) is the vector of all unknown node voltages. The \(Y_{kn}\) matrix does not change if switch positions do not change and piecewise linear devices represented in equation (3) remain on previous time-step segments. The negative of the first term after the equality sign in equation (9), contributes to the vector \(i_N\).

If in the system of equations (1), the equation for \(y\) is modified to include the differential of \(u\) then
\[y = C_k x + D_k u + D_{lk} \hat{u} \]
(11)

and the I-type groups can hold both unknown voltages and currents and \(y_N \) becomes a submatrix in \(A_N \). In equation (8) the variables \(y^{i_1}_{\eta + \Delta t} \) and \(y^{i_2}_{\eta + \Delta t} \) can be regrouped on the right-hand side and listed in \(x_N \) with coefficients inserted in equation rows of \(A_N \). The history (or known) terms participate in \(b_N \).

It is also noticed that it is not necessary to assume that all groups are using state-space equations. In fact any given group can also use nodal equations, in which case such equations can be included directly into equation (10) or in MANA equations. Moreover, such equations can contain nonlinear devices solved through an iterative process and independently from state-space equations.

B. Solution steps

The complete solution algorithm is defined through the following steps:

1. Find steady-state solution.
2. Advance to the next time-point.
3. Determine all switch positions (kth permutation) and formulate state-space equations (3) and (4).
4. Determine all history terms and update equation (9).
5. Update (if necessary) the global nodal admittance matrix \(Y_N \) that contains contributions from all groups.
6. Update \(i_N \) from group contributions.
7. Solve the system of nodal equations (10) to determine all node voltages. This can be done using LU factorization and a sparse matrix based solver for efficiency in larger systems.
8. Use equations (3) and (4) to compute the state-space solutions at the current time-point \(t + \Delta t \).
9. Go back to step 2 if the simulation did not reach the last time-point.

Similar steps can be written for MANA. It also is noticed that the individual state-space groups can be solved in parallel. It means that it is possible to program the parallel implementation (on separate processor cores) of steps 3 to 6 and 8. Depending on the relative size of the groups this can lead to reduced computational time.

The steady-state solution is found by replacing the differential operator by Laplace \(s = j \omega \), with \(j \) being the complex operator and \(\omega \) the steady-state solution frequency in rad/s. Thus the complex version of equation (1) for the solution of state-variables becomes

\[
\hat{X} = (sI - A_k)^{-1} (b_{ki} \hat{U}_i + b_{kn} \hat{U}_n)
\]

(13)

\[
\hat{Y}_i = (C_{ki} \hat{H} B_{ki} + D_{ki}) \hat{U}_i + (C_{kn} \hat{H} B_{kn} + D_{kn}) \hat{U}_n
\]

(14)

\[
\hat{Y}_n = (C_{ki} H B_{ki} + D_{ki}) \hat{U}_i + (C_{kn} H B_{kn} + D_{kn}) \hat{U}_n
\]

(15)

where tilde-upper-case vectors are used to denote phasors, \(I \) is the identity matrix and \(H = (sI - A_k)^{-1} \). Equation (15) is first inserted into the complex version of equation (10) (or equation (12) for MANA) for finding the nodal solution. It is followed by the solution of equations (13) and (14). The solution of state variables at the time-point \(t = 0 \) is found by taking the real part of the corresponding phasors. This solution is used to initialize history terms for the following time-point solution with discretized equations (3) and (4).

C. Comparison with state-space and contributions to real-time simulations

The proposed SSN method provides several advantages over the state-space method. The clustering approach reduces the size and complexity in the automatic generation of state-space equations for each group. The groups can be solved in parallel and the number of pre-calculated matrix sets for switching topologies can become substantially reduced.

In the three-phase example shown in Fig. 1, two arbitrary networks S1 and S2 are interconnected using two switches and two pi-sections. If the state-space method is used for the entire system it will result into \(m \) state-variables. If the state-space solver pre-computes (particularly useful for real-time applications) the matrix sets for all switch position permutations it will require saving in memory \(2^6 = 64 \) matrices for the entire system.

The same system can be solved using SSN by separating into two groups (Group 1 and Group 2 shown in Fig. 1). Since the three-phase capacitors at the separation point will now count as separate states, the number of state-variables in each group becomes \((m + 3)/2\). The size of \(Y_N \) in equation (10) is \(3 \times 3 \). Also, the number of pre-calculated matrix sets now reduces to \(2 \times 2^3 = 16 \) from \(2^6 = 64 \). The created groups are linked only through the nodal interfacing equations. This allows a parallel setup and calculations on two independent CPUs or CPU cores. The computational burden of equation (10) is negligible when compared to much larger group equations.

![Fig 1 Three-phase system example](image-url)
III. VALIDATION

The method proposed in this paper has been validated using simple and complex systems. In addition to independent programming, the new method has been also implemented in the SimPowerSystems [1] (SPS) tool for Simulink. The reference nodal analysis is the modified-augmented-nodal analysis (MANA) method of EMTP-RV [17].

A. Simple RLC case

The simulated circuit is the one shown in Fig. 2. It is based on an equivalent 500 kV ac system switched onto a mostly capacitive RLC branch. The SSN method is used with two groups. Group 1 is of I-type and Group 2 is of V-type. It is noticed that the methodology proposed in this paper does not impose topological restrictions.

The switch SW is closed at 0.05 s. The circuit is automatically initialized using phasors and is in steady-state when the switch is closed.

The simulation results for the switch current are shown in Fig. 3 for two integration time-steps, namely \(\Delta t = 5 \mu s \) and \(\Delta t = 50 \mu s \). Both SSN and MANA are using halved time-step Backward Euler integration at discontinuity points. Fig. 4 shows the zoomed version for both methods at the energization instant and confirms that both methods are providing identical simulation results.

Fig. 2 Simple switched RLC circuit

Fig. 3 Switch SW current for the circuit of Fig. 3.

Fig. 4 Switch SW current for the circuit of Fig. 3, zoomed version.

B. HVDC system

This system (Fig. 5) is composed of a 1000 MW HVDC link used to transmit power from a 500 kV, 5000 MVA and 60 Hz network to a 345 kV, 10000 MVA and 50 Hz network. The AC networks are modeled by equivalents. The rectifier and the inverter are 12-pulse converters interconnected through a 300 km distributed parameter line (includes propagation delay) and two 0.5 H smoothing reactors. Capacitor banks, harmonic filters (11th and 13th) and high-pass filters for a total of 600 Mvars are used on each converter side. The three-winding transformers are Y-grounded on primary side and Y-Delta on the secondary side. The complete model and data are available in the software SimPowerSystems [1] (see also [20]). The only difference in this design is that the (300 Mvars) capacitor of the filter bank on the rectifier part is split into two parts, one of which is switched.

For the purpose of the test, the following groups are created on the rectifier side:
- Group #1: AC-source and impedance, V-type SSN group
- Group #2: Switched capacitor, I-type SSN group
- Group #3: Fixed filter bank, I-type SSN group
- Group #4: Transformer, thyristor-rectifier and smoothing reactor, V-type SSN group

The inverter side is simulated using the state-space method of [1].

The test consists of the energization of the DC-link to the nominal current with the 300 Mvars capacitor is switched on at 1.5 s of the simulation interval.

The simulation results are compared to SPS in Fig. 6 to Fig. 8 for a fixed integration time-step of 25 \(\mu s \). The match is very close and validates the SSN method. Closer examination of the DC current (see Fig. 7) will show small differences between the two simulation methods. This is normal since any small discrepancy in the thyristor switching methods will cause differences. In the current SPS code it is not possible to access details related to thyristor turn-on/turn-off and reproduce it exactly. The implementation based on the SSN method does not use specific switching tricks and the thyristor model is ideal. It is also noticed that a low frequency jitter occurs in both methods. This jitter is due to the 25 \(\mu s \) sampling time-step for thyristor switching. A solution to this problem has been proposed in [21]-[23] (see also analysis in [19]) and will be also implemented in the SSN method.

C. Breaker test setup

The objective of this example is to demonstrate that the proposed SSN method can be advantageously used for performing repetitive studies in state-space solvers. The tested system is shown in Fig. 9. It has been trimmed to simplify the presentation. It is used for testing fault detection and breaker opening under various fault conditions. It is a 50 Hz and 225 kV system with short transmission lines modeled as balanced PI sections. The source impedances are decoupled with \(R = 1.27 \Omega \) and \(L = 63.5 \text{ mH} \). The PI sections have a capacitance of \(1 \times 10^{-14} \text{ F/km} \) (diagonal matrix). The
positive-sequence resistance and inductance are 60 mΩ/km and 1.27 mH/km respectively, while the zero-sequence counterpart is three times higher. The system is lightly loaded with all loads having $P = 50$ MW and $Q = 0$. The tested fault locations are identified as F1 to F4. Various fault types with fault resistance can be applied. The tested breakers are BR1 and BR2.

The system is decomposed into 5 SSN (SS1 to SS5) groups as identified in Fig. 9. The SS1 group is of mixed-type. There is a total of 9 nodal points. The simulation results for CT1 (BR2) currents with a time-step of 25 µs for a phase-a to phase-b fault occurring at 100 ms at F3, are shown in Fig. 10. The breakers remain closed in this test and the fault disappears at 150 ms. The simulation results with SSN and SPS methods are identical.

The system of Fig. 9 is using PI sections and it is not possible to decouple with propagation delay based transmission line models. This causes problems in real-time applications. There are 2 breakers and 4 fault devices. The breakers use 3 switches and the fault devices require 4 switches for modeling various types of faults. This requires the pre-calculation of 2^{22} sets of state-space solution matrices, which is not realizable.
D. Real-time simulation results

In addition to the off-line simulations presented above, the HVDC system of Fig. 5 and the Breaker test setup of Fig. 9 have been tested in real-time on a target platform [24] comprising a single 3.2 GHz Xeon i7 Quad-core PC running under RedHat Linux kernel. Also, these tests are using the SPS implementation of the SSN algorithm.

The HVDC system was simulated with 3 cores: one core for the rectifier side based on the SSN method, the second core for the inverter side based on the state-space approach and the third core was used for simulating the HVDC controls. The worst case time-step reached 10µs with the groups identified in Fig. 5. Alternatively, the separate grouping of the two 6-valves groups could have been made for reducing the number of pre-calculated matrix sets, as the proposed SSN algorithm offers this flexibility.

The Breaker test setup was simulated on a single core. The worst case condition gives a time-step of 21µs.

The following table summarizes the above results. The worst case condition is suitable for 'hard' real-time simulation, it is the maximum calculation time of all time-steps. The switching events maximize processor un-caching effects. The measurements shown in the table below were performed without I/O devices.

<table>
<thead>
<tr>
<th>Test case</th>
<th>SSN time-step (µs)</th>
<th>CPUs used</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVDC</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Breaker</td>
<td>21</td>
<td>1</td>
</tr>
</tbody>
</table>

This simulation performance of the HVDC case is comparable to other real-time simulators [7][8]. A fair comparison of solver efficiency is difficult to perform based on timing values alone, since simulator technology, especially at the hardware level, differs significantly between existing simulators.

IV. NONLINEAR MODELS

The SPS implementation of the presented SSN method naturally incorporates nonlinear device models available in SPS. SPS uses current injections with time-step delay for representing nonlinearities. The current injection method has limitations, it may become less precise and suffer from stability problems particularly when the integration time-step increases. It is preferable to implement a simultaneous and iterative approach for best precision and robustness.

The test case presented in this section is used to demonstrate the capability to use the SSN method on its own for solving nonlinear models simultaneously. The tested circuit is the one shown in Fig. 11. The complete system data can be made available on request. It is a 12.5 kV distribution system with an equivalent at the main bus. The two transformers are modeled using a nonlinear inductance for the magnetization branch. The flux-current function is shown in Fig. 12. A piecewise linear representation is used.

This test case also demonstrates that the selection of state-space and nodal regions is arbitrary. Here it has been decided to select three state-space sections (SS1, SS2 and SS3) and the rest is kept in nodal (MANA) equations using equation (12). This selection is arbitrary. It is, for example, possible to combine SS1 and SS2 into a single state-space representation. Here the breaker BR and the fault switches are ideal and it is more efficient to represent them and update their status through equation (12). The nonlinear flux-current equations are also represented and solved more efficiently through equation (12). In this case each nonlinear function is linearized through its piecewise linear representation, but it is also possible to calculate the differential at each iteration.

For the above flux-current relation

\[\phi_{l_t} = K^{(j)} i_{l_t} + \phi_{0}^{(j)} \]

where \(\phi_{l_t} \) is the nonlinear inductance flux at the time-point \(t \), \(i_{l_t} \) is the inductance current , \(j \) is the iteration counter, \(K^{(j)} \) is the segment slope at iteration \(j \) and \(\phi_{0}^{(j)} \) is the segment flux at zero current. Since it is required to use voltage unknowns in nodal analysis, it can be demonstrated that equation (16) can be transformed into

\[i_{l_t} = \frac{\Delta t}{2 K^{(j)} v_{l_t}} + \frac{1}{K^{(j)}} \left(\phi_{n}^{(j)} - \phi_{0}^{(j)} \right) \]

where \(v_{l_t} \) is inductance voltage and \(\phi_{l_0} \) is flux history derived from the trapezoidal rule of integration. During the iterative process it is required to update the coefficient of \(v_{l_t} \) which modifies the branch admittance in the matrix \(A_N \) of equation (12). The last term in equation (17) requires the
iterative updating of b_N in equation (12). This approach is identical to the one used in [5] and [17], and applied here in the context of the SSN method. Due to linearization, the matrix A_N of equation (12) becomes the Jacobian matrix. Equation (12) is solved with iterative updating until convergence.

The studied scenario is the occurrence of a phase-a-to-ground fault (-4Ω) on bus XFMR. The solution starts in linear steady-state conditions. The fault occurs at 20 ms and clears at 133 ms. The breaker BR receives the opening signal at 133 ms and recloses at 203 ms. The phase current waveforms on the high voltage side of the transformer CusTx1 are shown in Fig. 13. The validation is performed using EMTP-RV since it uses a simultaneous iterative solver. Both methods provide identical results. The integration time-step is 50 µs.

The simultaneous solution qualification can be verified by demonstrating that all solution points remain on the nonlinear characteristic segments for any integration time-step. This is shown in Fig. 14. Zooming on the knee points will show jumps between connecting segments, which is normal since a fixe time-step is used. In addition to the fact that the nonlinear trajectory segments of each device are not overrun, convergence is achieved for all nonlinear devices (in this case there are two magnetization branches) at each solution time-point and within simultaneous electrical coupling.

It is observed here that the iterative process is applied on equation (12). The size of this system is normally smaller as compared to the representation of the entire network in MANA equations. It becomes much smaller when the number of nodes evacuated in linear state-space equations increases. The iterative process requires repetitive refactoring of the matrix A_N and becomes significantly more efficient when the size of A_N reduces. Thus the presented SSN methodology has the potential of introducing nonlinear iterative solution methodology into its real-time implementation.

V. CONCLUSION

This paper presented a power system simulation solver based on the combination of state-space and nodal analysis formulations of circuit equations. It is also compatible with modified-augmented-nodal analysis. The presented new method makes use of internal grouping of electric elements to enable a modulation of computational burden between state-space and nodal equations. It offers several numerical advantages.

The new method offers the capability of dramatic reduction in the number of saved matrix sets for switching permutations. This is particularly useful for real-time applications as demonstrated in this paper. Another advantage for state-space equations is the inheritance of an efficient and simultaneous nonlinear solution capability from the combination with nodal equations. Moreover, the iterative solver uses a reduced nodal matrix which increases efficiency and allows to anticipate the introduction of iterative solvers in real-time applications.

REFERENCES

BIOGRAPHIES

Christian Dufour received a Ph.D. degree from Laval University, Quebec, Canada in the year 2000. He joined Opal-RT Technologies in 1999 where he is the lead researcher in electric system simulation software for RT-LAB. Before joining Opal-RT, he worked on the development teams of Hydro-Quebec HYPERSIM real-time simulator as well as the MathWorks SimPowerSystems blockset. His current research interests are related to the algorithmic solutions for the real-time simulation of power systems and motor drives.

Jean Mahseredjian graduated from École Polytechnique de Montréal with a Ph. D. in 1991. From 1987 to 2004 he worked at IREQ (Hydro-Québec) on research and development activities related to the simulation and analysis of electromagnetic transients. In December 2004 he joined the faculty of electrical engineering at École Polytechnique de Montréal.

Jean Bélanger is the president and founder of Opal-RT Technologies, a manufacturer of real-time simulators. He is a specialist in power systems, with more than 25 years of experience in the field, including many years as part of the simulation division of Hydro-Québec where he helped to develop the 765 kV James Bay transmission system. He received his M. A. Sc. degree from École Polytechnique de Montréal. Since 2001, Mr. Bélanger is a fellow of the Canadian Academy of Engineering.