

Microgrid Testbeds & Controller Procurement

Testing and Comparing Microgrid Controllers Performance Aspects Using Hardware-in-the-Loop Simulations

Agenda

- ESIF-NREL intro
- Microgrid Controller Procurement 2017
- Microgrid testbed
- Model validation
- Test sequences
- Controllers evaluation criteria
- Example results

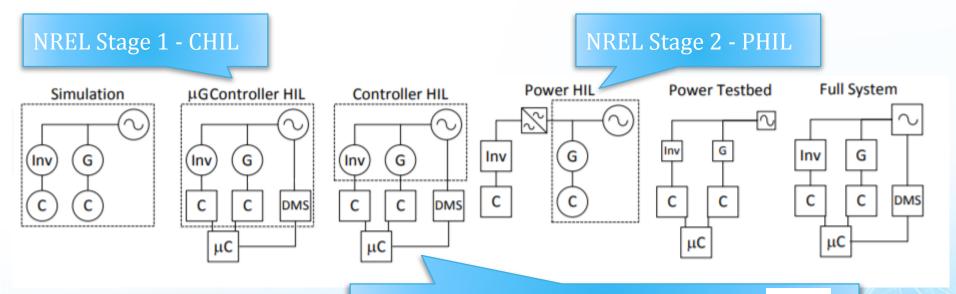
NREL – ESIF

Clean, reliable, and affordable energy at a pace and scale that matters

https://www.nrel.gov/esif/

Energy Systems Integration Facility (ESIF)

µGC Procurement


- NREL is seeking a microgrid control technology for installation in a permanent microgrid research testbed at the Energy Systems Integration Facility located in Golden, Colorado.
- The top-performing control technology will be installed at ESIF in 2018

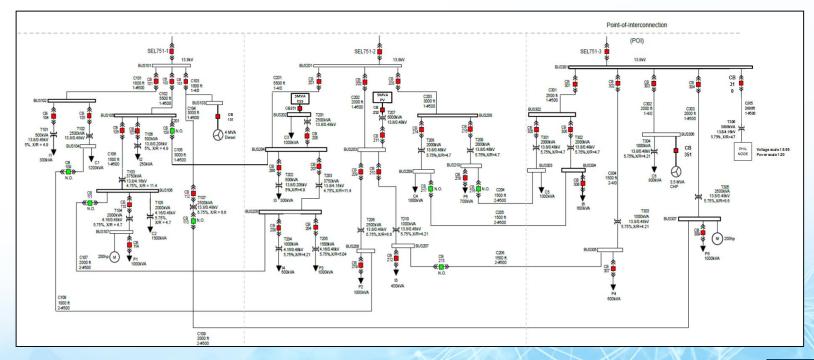
Testing microgrid controls

MIT Microgrid Symposium 2017 github.com/PowerSystemsHIL

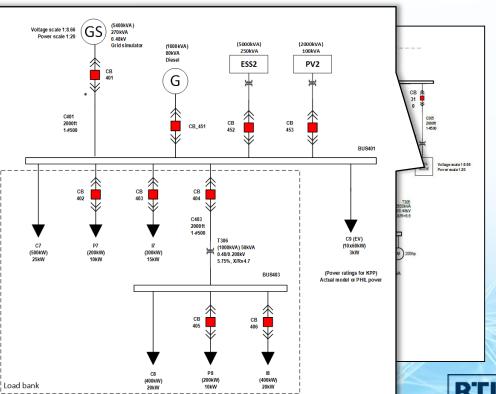
* Pictures from "Development of a Real-Time Hardwarein-the-Loop Power Systems Simulation Platform to Evaluate Commercial Microgrid Controllers", R.O. Salcedo J.K. Nowocin C.L. Smith R.P. Rekha E.G. Corbett E.R. Limpaecher J.M. LaPenta

Simulated Microgrid

- Single phase nodes: 291x
- 3x Synchronous Generators with controls
- 2x ESS (VSI, Battery with controls)
- 2x PV (VSI with controls)
- 49x CB with Protective Relays
- 1x DMS interface
- OP6500 12 cores utilized to run 100μs



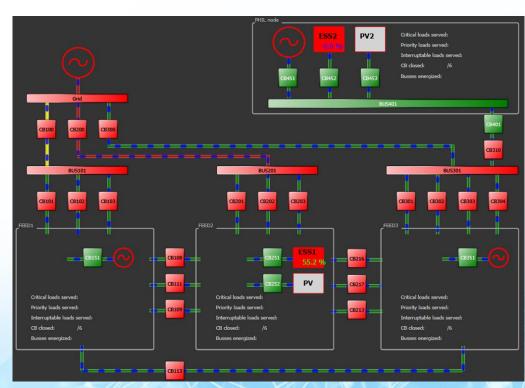
Single line diagram



Single line diagram – PHIL

Real power hardware: •270kVA Amatek grid simulator •AE100 100kVA PV inv •Magna power DC - PV simulator •Caterpillar BDP250 -250kVA ESS inverter •AV900 bi-directional DC supply – battery emulator •250kW LoadTec loadbank •ABB CB

•Onan Cummins 80kW diesel generator



HMI & DAQ

- Real time visualization of microgrid status using off-the-shelf RTAC
- Matlab used as test sequence generator and DAQ system
- Matlab⇔Opal-RT communication using UDP

Controller interface

- Based on Ethernet only
- 50x IEC61850 GOOSE messages (Opal-RT)
- 56x Modbus TCP interfaces (Opal-RT)
- Direct Modbus&IEC61850 communication to devices in PHIL

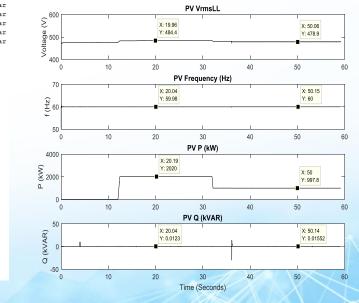
Device	IP Address	ТСР	Feeder
		Port	Location ID
GEN3 – Real Diesel	10.79.112.37	502	F4
Genset Controller			
ESS2 Inverter – BDP250	10.79.112.38	502	F4
PV2 Inverter – AE 100	10.79.112.39	502	F4
"DMS" Dispatch	10.79.112.80	502	n/a
Interface			
GEN1 – Simulated Diesel	10.79.112.81	502	F1
Genset Controller			
GEN2 – Simulated	10.79.112.82	502	F3
Natural Gas Engine			
Controller			
GEN2 – Simulated CHP	10.79.112.83	502	F3
Thermal Controller			
GEN3 – Simulated Diesel	10.79.112.84	502	F1
Genset Controller			
ESS1 Simulated	10.79.112.85	502	F2
Controller			
ESS2 Simulated	10.79.112.86	502	F2
Controller			
PV1 Simulated	10.79.112.87	502	F2
Controller			
PV2 Simulated	10.79.112.88	502	F2
Controller			
Generic Relay CB101	10.79.112.101	502	F1
Generic Relay CB102	10.79.112.102	502	F1
Generic Relay CB103	10.79.112.103	502	F1

Load flow validation

SimPowerSystems Load flow

Opal-RT Real-Time execution

Steady state comparison


Total	generation	÷	P=	1.81	MW	Q=	0.88	Mva
Total	PQ load	÷	P=	0.00	MW	Q=	0.01	Mva
Total	Zshunt load	÷	P=	1.79	MW	Q=	0.87	Mva
Total	ASM load	÷	P=	0.00	MW	Q=	0.00	Mva
Total	losses	:	P=	0.01	MW	Q=	0.00	Mva

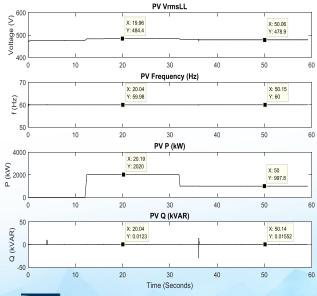
1	:	BESS	s v= 1.000	p	u/0.	48kV 0.0	00 0	deg	;	Swing	g bus
			Generation	:	P=	0.81	MW	Q=		0.88	Mvar
			PQ_load	:	P=	0.00	MW	Q=		0.00	Mvar
			Z_shunt	÷	P=	0.00	MW	Q=		0.00	Mvar
	-	>	*23*	÷	P=	-0.10	MW	Q=		0.43	Mvar
		>	C3	÷	P=	0.90	MW	Q=		0.44	Mvar

2	:	C3	V= 0.999 pu	1/0	0.48kV	0.01	deq	3		
			Generation	:	P=	0.00	MW	Q=	0.00	Mvar
			PQ_load	:	P=	0.00	MW	Q=	0.01	Mvar
			Z_shunt	:	P=	0.90	MW	Q=	0.43	Mvar
	-	>	BESS	:	P=	-0.90	MW	Q=	-0.44	Mvar

3 : C4	V= 0.994 pu	1/0	.48kV	0.27	deg	1		
	Generation	÷	P=	0.00	MW	Q=	0.00	Mvar
	PQ_load	÷	P=	0.00	MW	Q=	-0.00	Mvar
	Z_shunt	÷	P=	0.89	MW	Q=	0.43	Mvar
>	*11*	:	P=	-0.89	MW	Q=	-0.43	Mvar

4	:	PV	V= 1.002 pt	1/(0.48k	V 0.18	deg	1		
			Generation	:	P=	1.00	MW	Q=	0.00	Mvar
			PQ_load	:	P=	-0.00	MW	Q=	0.00	Mvar
			Z_shunt	:	P=	-0.00	MW	Q=	0.00	Mvar
	-	>	*28*	:	P=	1.00	MW	Q =	-0.00	Mvar

Islanded	Load flow	Real time	Error [%]
C3– V (pu)	1.00	0.99	0.88
C4– V (pu)	0.99	0.98	0.95
ESS– V (pu)	1.00	1.00	0.31
ESS– P (MW)	0.81	0.84	3.43
ESS– Q (MVAR)	0.88	0.85	3.08
PV– V (pu)	1.00	1.00	0.43
PV– P (MW)	1.00	1.00	0.22
PV– Q (MVAR)	0.00	0.00	0.00



Inverse load flow validation NATIONAL RENEWABLE ENERGY LABORATORY

Opal-RT Real-Time execution

SimPowerSystems Load flow

Steady state comparison

	OPAL·RT	
=	TECHNOLOGIES	

Total generation	:	P=	1.81	MW	Q=	0.88	Mvar
Total PQ load	:	P=	0.00	MW	Q=	0.01	Mvar
Total Zshunt load	:	P=	1.79	MW	Q=	0.87	Mvar
Total ASM load	÷	P=	0.00	MW	Q=	0.00	Mvar
Total losses	:	P=	0.01	MW	Q=	0.00	Mvar

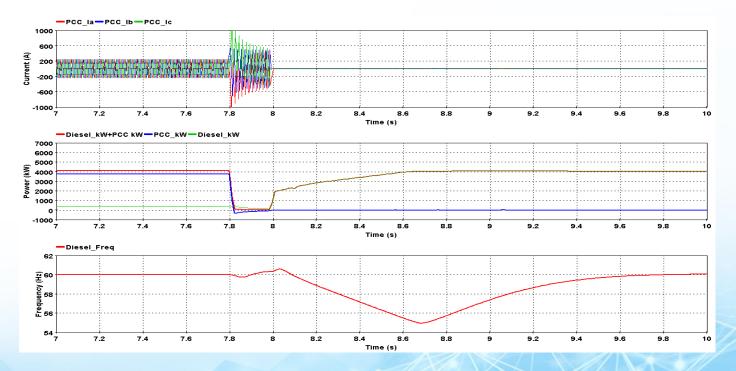
1 : BES	S V= 1.000	pı	1/0.4	8kV 0.0	00 0	leg	;	Swing	g bus
	Generation	:	P=	0.81	MW	Q=		0.88	Mvar
	PQ_load	÷	P=	0.00	MW	Q=		0.00	Mvar
	Z_shunt	:	P=	0.00	MW	Q=		0.00	Mvar
>	*23*	:	P=	-0.10	MW	Q=		0.43	Mvar
>	C3	÷	P=	0.90	MW	Q=		0.44	Mvar

2 : C3 V= 0.999 pu/0.48kV 0.01 deg

	Generation	:	P=	0.00	MW	Q=	0.00	Mvar
	PQ_load	÷	P=	0.00	MW	Q=	0.01	Mvar
	Z_shunt	\$	P=	0.90	MW	Q=	0.43	Mvar
>	BESS	÷	P=	-0.90	MW	Q=	-0.44	Mvar

3 : C4 V= 0.994 pu/0.48kV 0.27 deg

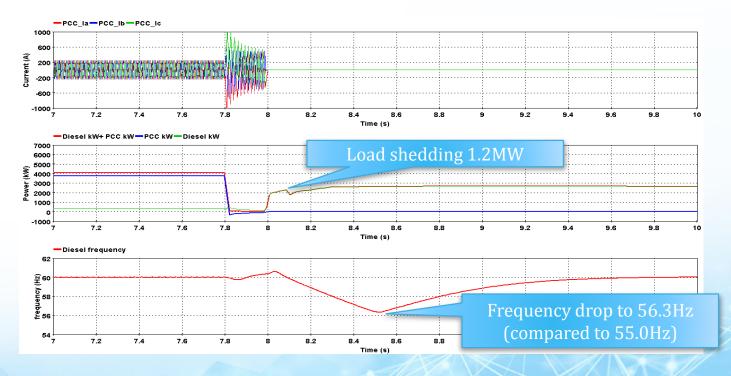
	Generation	:	P=	0.00	MW	Q=	0.00	Mvar	
	PQ_load	÷	P=	0.00	MW	Q=	-0.00	Mvar	
	Z_shunt	÷	P=	0.89	MW	Q=	0.43	Mvar	
>	*11*	÷	P=	-0.89	MW	Q=	-0.43	Mvar	


4 : PV V= 1.002 pu/0.48kV 0.18 deg Generation : P= 1.00 MW Q= 0.00 Mvar

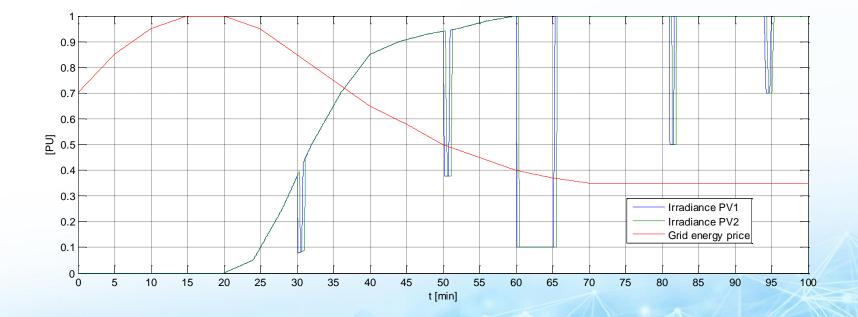
	PQ_load		P=	-0.00	MW	Q=	0.00	Mvar
	Z_shunt	:	P=	-0.00	MW	Q=	0.00	Mvar
>	*28*	:	P=	1.00	MW	Q=	-0.00	Mvar

	Load	Real	
Point	flow	time	Error [%]
C1 – V (pu)	0.994	0.993	0.13
C2 – V (pu)	0.985	0.984	0.13
l1 – V (pu)	0.993	0.992	0.08
I2-V (pu)	0.990	0.989	0.06
P1-V (pu)	0.975	0.974	0.15
GEN1 – V (pu)	1.001	1.000	0.10
GEN1 – P (MW)	3.600	3.600	0.00
GEN1 – Q			
(MVAR)	1.720	1.720	0.00
Motor1-V (pu)	0.986	0.960	2.64
C3 – V (pu)	0.996	0.993	0.30
C4 – V (pu)	0.993	0.990	0.30

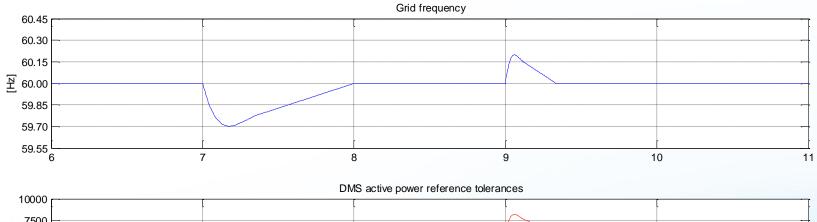
Transient behavior validation

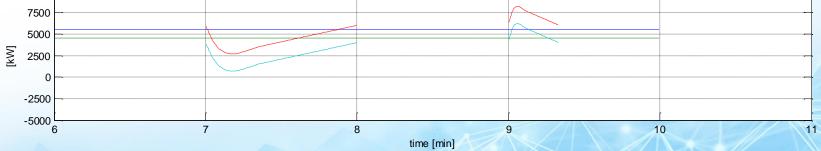


Transient behavior validation

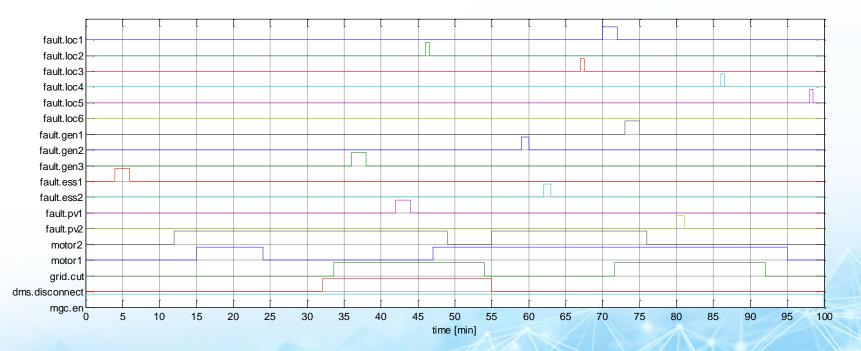


Test sequence - stimuli





Test sequence – grid stimuli



Test sequence – stimuli

Key Performance Parameters (KPP)

KPP1 - Resiliency and Reliability

Measured by calculating the energy delivered to predetermined categories of load. A penalty will be added for any outage on critical loads.

KPP2 - Operation and Maintenance

The cost of fuels to run DER's and values device degradation from use (e.g. causing faster failure, circuit breakers use).

KPP3 - Interconnection Contract

The price of energy during the test sequence will vary to allow the controller to benefit from various choices (e.g. dispatching energy from battery).

KPP4 - Distribution Service Operator (DSO) Commands

The microgrid controller can allow additional revenue by providing services to DSO on request. Failing to provide required services will result in a penalty.

KPP5 - Power Quality

Voltage and frequency violating IEEE 1547a-2014 clearing times (Tables 1 and 2 of the standard) will be counted. of the standard will be counted.

KPP6 - Microgrid Survivability

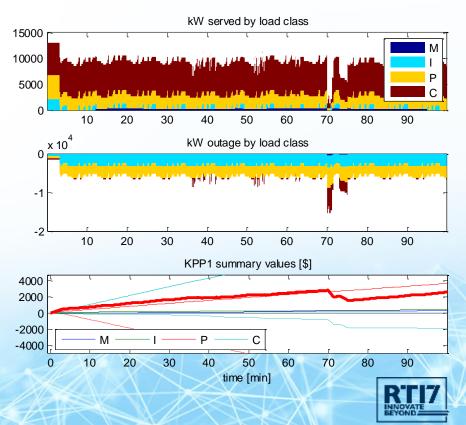
Keeping battery State of Charge (SoC) below the predetermined level during grid connected conditions will result in a penalty.

KPP7- Fuel- Free Asset Utilization

The amount of energy generated from PV to supply 1MWh of loads in the microgrid and PV energy generation will be measured.

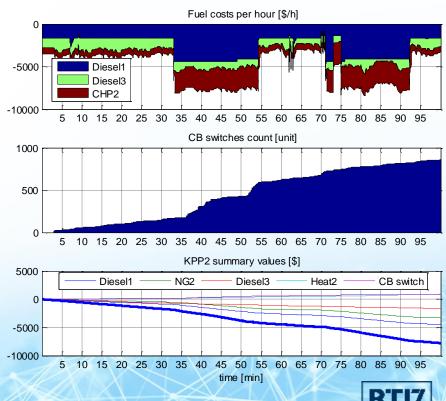
KPP8 - Economic operation

Dollar sum of KPP1 to KPP7 allowing for overall comparison of various controllers under test



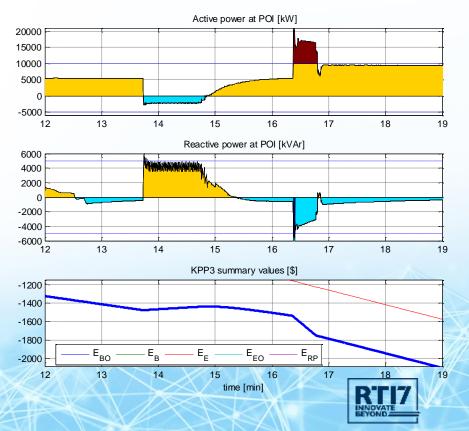
KPP1 – Resiliency

Energy delivered to Critical loads (E _C)	E _C [kWh]	P ₁₁ = 1.00[\$/kWh]
Energy delivered to Priority loads (E _P)	E _p [kWh]	P ₁₂ = 0.90[\$/kWh]]
Energy delivered to Interruptible loads (E ₁)	E _I [kWh]	P ₁₃ = 0.85[\$/kWh]
Energy Critical loads Outage (ECO)	E _{CO} [kWh]	P ₁₅ = 4.50 [\$/kWh]
Energy Priority loads Outage (ECO)	E _{PO} [kWh]	P ₁₆ = 2.25 [\$/kWh]
Energy left in ESS at the end of the sequence compared to initial state of charge	E _{ESS} [kWh]	P ₁₇ = 1.00 [\$/kWh]



KPP2 – Operational costs

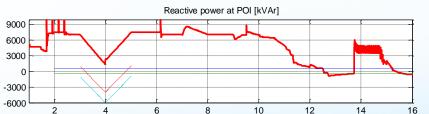
Used Fuel - Diesel (F _D)	F _D [gal]	P ₂₁ = 74.55 [\$/gal]
Used Fuel- Natural Gas (F _{NG})	F _{NG} [m ³]	P ₂₂ = 4.18 [\$/m ³]
Number of Diesel starts (N _D)	N _D	P ₂₃ = 10 00[\$]
Number Combined Heat & Power re-starts (N _{CHP})	N _{CHP}	P ₂₄ = 10.00 [\$]
Number of Battery cycles (N _{B)}	N _B	P ₂₅ = 10.00 [\$]
Number of Circuit Breaker cycles (N _{CB)}	N _{CB}	P ₂₆ = 1.00 [\$]
Energy delivered as Heat (E _H)	E _H [MBtu]	P ₂₈ = 147.00[\$/MBtu]



KPP3 – Interconnection contract

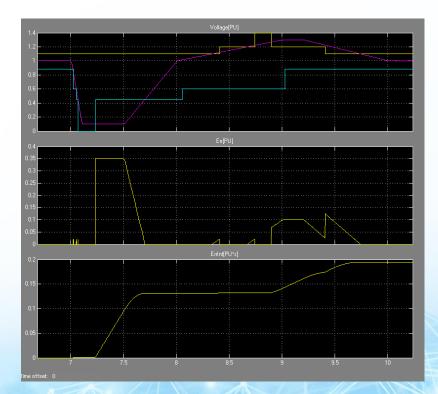
Active Power Import Limit = 12 MW Active Power Export Limit = 6 MW Reactive Power Limit = 5 MVAr

Exported Energy (E _E)	E _E [kWh]	$P_{E}[/kWh] (p_{31})$
Exported Energy Over limit (E _{E0})	E _{E0} [kWh]	P_{E0} [\$/kWh] ($p_{32}=p_{31}*k_{E0}$)
Energy imported (bought from grid. E _B)	E _B [kWh]	P _B [\$/kWh] (p ₃₁)
Energy imported over limit (bought from grid, E _{BO})	E _{B0 [} kWh]	P _{B0} [\$/kWh] (p ₃₃ =p ₃₁ *k _{B0})
Reactive power over limit penalty	E _{RP} [kVArh]	P ₃₃ = 0.50 [\$/kVArh]



KPP4 – Grid services

Meeting dispatch command premium (DP). Power imported from Grid to µG	T _{DP} min	P ₄₁ = 23.60 [\$/min]
Meeting demand command premium (DM). Power exported from μG to Grid	T _{DM} min	P ₄₁ = 23.60 [\$/min]
Following Volt/Var support premium (VV)	T _{vv} min	P ₄₃ = 290.00 [\$/min]
Following Demand response curve (Freq/kW, FkW)	T _{FkW} min	P ₄₄ = 149.50 [\$/min]
Meeting power factor request (PF)	T _{PF} min	P ₄₆ = 11.21 [\$/min]
Violating planned disconnect request (DR)	T _{DR} min	P ₄₅ = 19.50 [\$/min]
Unplanned disconnect – failure to disconnect (UD)	T _{UD} min	P ₄₇ = 26.40 [\$/min]


KPP5 – Power quality

- Voltage monitored on every bus
- According to IEEE 1547a-2014
- Fault integrators implemented in real time

Default setti	ngs ^a				
Voltage range (% of base voltage ^b)	Clearing time (s)	Clearing time: adjustable up to and including (s)			
V < 45	0.16	0.16			
45 ≤ V < 60	1	11			
60 ≤ V < 88 2		21			
110 < V < 120	1	13			
V ≥ 120 0.16 0.16					
^a Under mutual agreement between the EPS and DR operators, other static or dynamic voltage and clearing time trip settings shall be permitted					
^o Base voltages are the nominal system voltages stated in ANSI C84.1-2011, Table 1.					

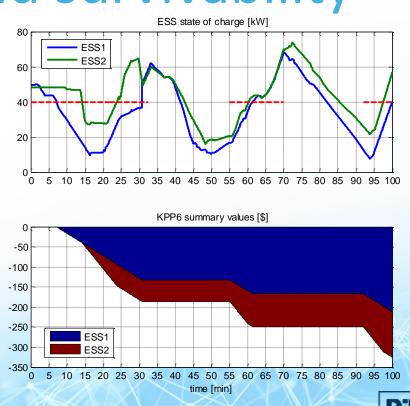
* Table 1 from IEEE1547a-2014 standard

KPP5 – Power quality


- Frequency monitored on every bus
- According to IEEE 1547a-2014
- Fault integrators implemented in real time

	Default settings		Ranges of adjustability		
Function	Frequency (Hz)	Clearing time (s)	Frequency (Hz)	Clearing time (s) adjustable up to and including	
UF1	< 57	0.16	56 - 60	10	
UF2	< 59.5	2	56 - 60	300	
OF1	> 60.5	2	60 - 64	300	
OF2	> 62	0.16	60 - 64	10	

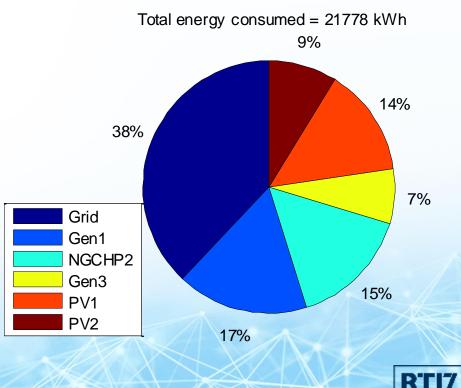
* Table 2 from IEEE1547a-2014 standard



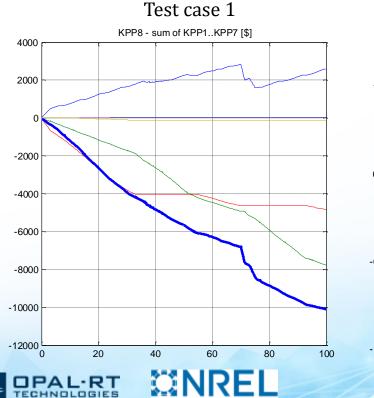
lime offset: 0

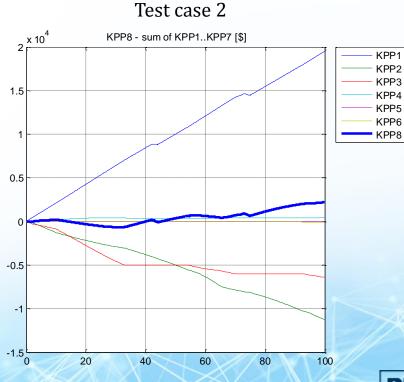
KPP6 – Microgrid survivability

 Penalty is issued when SoC is below 40% during grid connected operation



KPP7 – Free assets utilization


- >25% energy can come from solar in this test pattern
- >43% power can come from solar at peak irradiation
- Solar doesn't have a cost associated thus it is very favorable to use it



KPP8 – Summary result

RENEWABLE ENERGY LABORATI

Next steps

- Currently in are at Stage 1 (CHIL) and validating Team #4
- We will publish details about competition winner's strategies and analyze various teams' approaches
- Models will be published after procurement: <u>github.com/mgcp2017/</u>

Acknowledgements

This work was supported by the U.S. Department of Energy. NREL would like to thank MIT Lincoln Laboratories for their collaboration on this project.

THANK YOU

