Click here to see the complete Academic brochure

VISIT OUR ONLINE STORE opal-rt.com/store

Power electronics

OP1300

"Accelerate your development by going into the lab early to challenge your control in a real world environment "

Syed Qaseem Ali , Ph.D Team Leader - Transmission, Distribution and Distributed Energy Resources Application eXpertise and Electrical Simulation division (AXES) Modular, flexible and configurable, the power electronics test bench combines a state-ofthe-art Hardware-in-the-Loop (HIL) simulator from OPAL-RT with Imperix's Rapid Control Prototyping (RCP) system and real power hardware. It enables rapid development of power electronics, drives and smart grid applications across industry and academia.

PLATFORM OFFER FOR POWER ELECTRONICS TEST BENCH

BOOMBOX RCP

- 16 analog inputs, 16 fiber optic outputs, 8+8 digital I/O, CAN
- Hardware protections
- 300 MHz TI DSP
- Up to 200 kHz sampling

POWER CONVERTER(S)

- Reconfigurable topology
- 6x PEB power modules max 800V / 32A or 400V / 46A
- Variable-speed cooling
- Up to 50 kHz switching

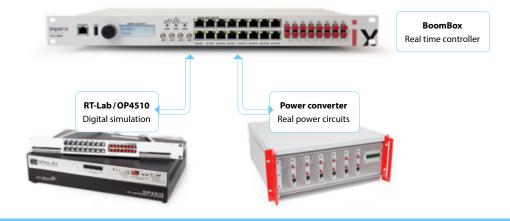
19" CABINET

OPAL-RT OP4510

- 4-core CPU, Xeon E3 3.5 GHz
- Kintex-7 XILINX FPGA, 325T
- 32/32 digital, 16/16 analog I/O
- Interface for BoomBox RCP

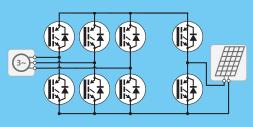
HIL INTERFACE

PASSIVE ELEMENTS

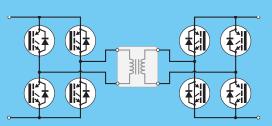

- 6x inductors (2.5mH, 20A)
- 2x LC-type common-mode EMC
- filters (3-phase) • External voltage sensors
- External relays and breakers

AC / DC BREAKERS

- Circuit disconnectors
- AC / DC breakers
- Controllable relays
- DC voltage sensor
- 3x AC voltage sensors



OUR MULTI-PURPOSE TEST BENCH SUPPORTS BOTH HIL SIMULATION AND LOW-VOLTAGE EXPERIMENTATION WITH EASY-TO-USE RECONFIGURABLE HARDWARE



Users can use all six half-bridges to implement back-to-back converters, such as grid-tied var-speed drives, HVDC systems, etc. Alternately, fewer modules may be sufficient for applications such as PV inverters, battery chargers, etc.

Thanks to the complete flexibility in the connections of the modules, isolated DC/DC systems are also supported, such as DAB, resonant converters or similar topologies. Interleaved DC/DC systems are of course within reach as well.

PV INVERTER Grid-tied central inverter for photovoltaic application

BATTERY CHARGER Single-phase inverter with isolated DC/Dⁱ converter